Skip to content
EEEP
Menu
  • 2012
    • Volume 1
      • Number 1
      • Number 2
      • Number 3
  • 2013
    • Volume 2
      • Number 1
      • Number 2
  • 2014
    • Volume 3
      • Number 1
      • Number 2
  • 2015
    • Volume 4
      • Number 1
      • Number 2
  • 2016
    • Volume 5
      • Number 1
      • Number 2
  • 2017
    • Volume 6
      • Number 1
      • Number 2
  • 2018
    • Volume 7
      • Number 1
      • Number 2
  • 2019
    • Volume 8
      • Number 1
      • Number 2
  • 2020
    • Volume 9
      • Number 1
      • Number 2
  • 2021
    • Volume 10
      • Number 1
      • Number 2
    • Volume 9
      • Number 2
  • 2022
    • Volume 10
      • Number 2
    • Volume 11
      • Number 1
      • Number 2
  • 2023
    • Volume 11
      • Number 2
    • Volume 12
      • Number 1
      • Number 2
  • 2024
    • Volume 13
      • Number 1
      • Number 2
  • 2025
    • Volume 14
      • Number 1
Menu

On the Techno-economic Benefits of a Global Energy Interconnection

Posted on February 4, 2026February 9, 2026 by admin

The discussion about the benefits of a global energy interconnection is gaining momentum in recent years. The techno-economic benefits of this integration are broadly discussed for the major regions around the world. While there has not been substantial research on the techno-economic benefits, however, some initial results of the global energy interconnection are presented in this paper. Benefits achieved on the global scale are lower than the interconnections within the national and sub-national level. The world is divided into 9 major regions and the major regions comprise of 23 regions. When all the considered regions are interconnected globally, the overall estimated levelized cost of electricity is 52.5 €/MWh for year 2030 assumptions, which is 4% lower than an isolated global energy system. Further, the required installed capacities decrease by 4% for the fully interconnected system. Nevertheless, a more holistic view on the entire energy system will progress research on global energy interconnection as, synthetic power-to-X fuels and chemicals emerge as an important feature of the future sustainable global energy system with strong interactions of the power system not only to the supply, in energy fuel and chemicals trading globally, but also to the demand side. Global energy interconnection will be part of the solution to achieve the targets of the Paris Agreement and more research will help to better understand its impact and additional value.

Authors: Christian Breyer, Dmitrii Bogdanov, Arman Aghahosseini, Ashish Gulagi, and Mahdi Fasihi
Download PDFExecutive Summary PDF
Category: Number 1

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Tags

Air pollution Appliances Charging infrastructure China Circularity Climate change Climate policy community minigrids Economic growth economic reform electric electricity access Electricity market design Electricity markets Electricity networks Electric vehicles Energy Energy communities energy economics Energy efficiency Energy Efficiency Policy Energy Policy equitable employment evaluation Feminist theory Geopolitics Green bonds informal settlements Introduction Investment Long-term contracts Middle East Minimum Energy Efficiency Standards Natural gas Oil prices Path dependency Regulation Renewable energy Resource adequacy Scenarios Sustainability Sustainable cities sustainable development Tax policies Techno-bias

Archives

  • February 2026
© 2026 EEEP | Powered by Minimalist Blog WordPress Theme